
Freesound is a lib used for audio processing. Unfortunately, it doesn't work with python3. It lives in extlib, so we don't own the code. But, since the patch is pretty trivial, it was decided to merge it anyway and propose the fix to upstream. Which was done in https://github.com/MTG/freesound/pull/700 . Also, a bugreport was opened to use upstream version instead of our local, when it gets merged, ticket 5403.
617 lines
22 KiB
Python
617 lines
22 KiB
Python
#!/usr/bin/env python
|
|
# processing.py -- various audio processing functions
|
|
# Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG)
|
|
# UNIVERSITAT POMPEU FABRA
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as
|
|
# published by the Free Software Foundation, either version 3 of the
|
|
# License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
# Authors:
|
|
# Bram de Jong <bram.dejong at domain.com where domain in gmail>
|
|
# 2012, Joar Wandborg <first name at last name dot se>
|
|
|
|
from PIL import Image, ImageDraw, ImageColor #@UnresolvedImport
|
|
from functools import partial
|
|
import math
|
|
import numpy
|
|
import os
|
|
import re
|
|
import signal
|
|
|
|
|
|
def get_sound_type(input_filename):
|
|
sound_type = os.path.splitext(input_filename.lower())[1].strip(".")
|
|
|
|
if sound_type == "fla":
|
|
sound_type = "flac"
|
|
elif sound_type == "aif":
|
|
sound_type = "aiff"
|
|
|
|
return sound_type
|
|
|
|
|
|
try:
|
|
import scikits.audiolab as audiolab
|
|
except ImportError:
|
|
print("WARNING: audiolab is not installed so wav2png will not work")
|
|
import subprocess
|
|
|
|
class AudioProcessingException(Exception):
|
|
pass
|
|
|
|
class TestAudioFile(object):
|
|
"""A class that mimics audiolab.sndfile but generates noise instead of reading
|
|
a wave file. Additionally it can be told to have a "broken" header and thus crashing
|
|
in the middle of the file. Also useful for testing ultra-short files of 20 samples."""
|
|
def __init__(self, num_frames, has_broken_header=False):
|
|
self.seekpoint = 0
|
|
self.nframes = num_frames
|
|
self.samplerate = 44100
|
|
self.channels = 1
|
|
self.has_broken_header = has_broken_header
|
|
|
|
def seek(self, seekpoint):
|
|
self.seekpoint = seekpoint
|
|
|
|
def read_frames(self, frames_to_read):
|
|
if self.has_broken_header and self.seekpoint + frames_to_read > self.num_frames / 2:
|
|
raise RuntimeError()
|
|
|
|
num_frames_left = self.num_frames - self.seekpoint
|
|
will_read = num_frames_left if num_frames_left < frames_to_read else frames_to_read
|
|
self.seekpoint += will_read
|
|
return numpy.random.random(will_read)*2 - 1
|
|
|
|
|
|
def get_max_level(filename):
|
|
max_value = 0
|
|
buffer_size = 4096
|
|
audio_file = audiolab.Sndfile(filename, 'r')
|
|
n_samples_left = audio_file.nframes
|
|
|
|
while n_samples_left:
|
|
to_read = min(buffer_size, n_samples_left)
|
|
|
|
try:
|
|
samples = audio_file.read_frames(to_read)
|
|
except RuntimeError:
|
|
# this can happen with a broken header
|
|
break
|
|
|
|
# convert to mono by selecting left channel only
|
|
if audio_file.channels > 1:
|
|
samples = samples[:,0]
|
|
|
|
max_value = max(max_value, numpy.abs(samples).max())
|
|
|
|
n_samples_left -= to_read
|
|
|
|
audio_file.close()
|
|
|
|
return max_value
|
|
|
|
class AudioProcessor(object):
|
|
"""
|
|
The audio processor processes chunks of audio an calculates the spectrac centroid and the peak
|
|
samples in that chunk of audio.
|
|
"""
|
|
def __init__(self, input_filename, fft_size, window_function=numpy.hanning):
|
|
max_level = get_max_level(input_filename)
|
|
|
|
self.audio_file = audiolab.Sndfile(input_filename, 'r')
|
|
self.fft_size = fft_size
|
|
self.window = window_function(self.fft_size)
|
|
self.spectrum_range = None
|
|
self.lower = 100
|
|
self.higher = 22050
|
|
self.lower_log = math.log10(self.lower)
|
|
self.higher_log = math.log10(self.higher)
|
|
self.clip = lambda val, low, high: min(high, max(low, val))
|
|
|
|
# figure out what the maximum value is for an FFT doing the FFT of a DC signal
|
|
fft = numpy.fft.rfft(numpy.ones(fft_size) * self.window)
|
|
max_fft = (numpy.abs(fft)).max()
|
|
# set the scale to normalized audio and normalized FFT
|
|
self.scale = 1.0/max_level/max_fft if max_level > 0 else 1
|
|
|
|
def read(self, start, size, resize_if_less=False):
|
|
""" read size samples starting at start, if resize_if_less is True and less than size
|
|
samples are read, resize the array to size and fill with zeros """
|
|
|
|
# number of zeros to add to start and end of the buffer
|
|
add_to_start = 0
|
|
add_to_end = 0
|
|
|
|
if start < 0:
|
|
# the first FFT window starts centered around zero
|
|
if size + start <= 0:
|
|
return numpy.zeros(size) if resize_if_less else numpy.array([])
|
|
else:
|
|
self.audio_file.seek(0)
|
|
|
|
add_to_start = -start # remember: start is negative!
|
|
to_read = size + start
|
|
|
|
if to_read > self.audio_file.nframes:
|
|
add_to_end = to_read - self.audio_file.nframes
|
|
to_read = self.audio_file.nframes
|
|
else:
|
|
self.audio_file.seek(start)
|
|
|
|
to_read = size
|
|
if start + to_read >= self.audio_file.nframes:
|
|
to_read = self.audio_file.nframes - start
|
|
add_to_end = size - to_read
|
|
|
|
try:
|
|
samples = self.audio_file.read_frames(to_read)
|
|
except RuntimeError:
|
|
# this can happen for wave files with broken headers...
|
|
return numpy.zeros(size) if resize_if_less else numpy.zeros(2)
|
|
|
|
# convert to mono by selecting left channel only
|
|
if self.audio_file.channels > 1:
|
|
samples = samples[:,0]
|
|
|
|
if resize_if_less and (add_to_start > 0 or add_to_end > 0):
|
|
if add_to_start > 0:
|
|
samples = numpy.concatenate((numpy.zeros(add_to_start), samples), axis=1)
|
|
|
|
if add_to_end > 0:
|
|
samples = numpy.resize(samples, size)
|
|
samples[size - add_to_end:] = 0
|
|
|
|
return samples
|
|
|
|
|
|
def spectral_centroid(self, seek_point, spec_range=110.0):
|
|
""" starting at seek_point read fft_size samples, and calculate the spectral centroid """
|
|
|
|
samples = self.read(seek_point - self.fft_size/2, self.fft_size, True)
|
|
|
|
samples *= self.window
|
|
fft = numpy.fft.rfft(samples)
|
|
spectrum = self.scale * numpy.abs(fft) # normalized abs(FFT) between 0 and 1
|
|
length = numpy.float64(spectrum.shape[0])
|
|
|
|
# scale the db spectrum from [- spec_range db ... 0 db] > [0..1]
|
|
db_spectrum = ((20*(numpy.log10(spectrum + 1e-60))).clip(-spec_range, 0.0) + spec_range)/spec_range
|
|
|
|
energy = spectrum.sum()
|
|
spectral_centroid = 0
|
|
|
|
if energy > 1e-60:
|
|
# calculate the spectral centroid
|
|
|
|
if self.spectrum_range == None:
|
|
self.spectrum_range = numpy.arange(length)
|
|
|
|
spectral_centroid = (spectrum * self.spectrum_range).sum() / (energy * (length - 1)) * self.audio_file.samplerate * 0.5
|
|
|
|
# clip > log10 > scale between 0 and 1
|
|
spectral_centroid = (math.log10(self.clip(spectral_centroid, self.lower, self.higher)) - self.lower_log) / (self.higher_log - self.lower_log)
|
|
|
|
return (spectral_centroid, db_spectrum)
|
|
|
|
|
|
def peaks(self, start_seek, end_seek):
|
|
""" read all samples between start_seek and end_seek, then find the minimum and maximum peak
|
|
in that range. Returns that pair in the order they were found. So if min was found first,
|
|
it returns (min, max) else the other way around. """
|
|
|
|
# larger blocksizes are faster but take more mem...
|
|
# Aha, Watson, a clue, a tradeof!
|
|
block_size = 4096
|
|
|
|
max_index = -1
|
|
max_value = -1
|
|
min_index = -1
|
|
min_value = 1
|
|
|
|
if start_seek < 0:
|
|
start_seek = 0
|
|
|
|
if end_seek > self.audio_file.nframes:
|
|
end_seek = self.audio_file.nframes
|
|
|
|
if end_seek <= start_seek:
|
|
samples = self.read(start_seek, 1)
|
|
return (samples[0], samples[0])
|
|
|
|
if block_size > end_seek - start_seek:
|
|
block_size = end_seek - start_seek
|
|
|
|
for i in range(start_seek, end_seek, block_size):
|
|
samples = self.read(i, block_size)
|
|
|
|
local_max_index = numpy.argmax(samples)
|
|
local_max_value = samples[local_max_index]
|
|
|
|
if local_max_value > max_value:
|
|
max_value = local_max_value
|
|
max_index = local_max_index
|
|
|
|
local_min_index = numpy.argmin(samples)
|
|
local_min_value = samples[local_min_index]
|
|
|
|
if local_min_value < min_value:
|
|
min_value = local_min_value
|
|
min_index = local_min_index
|
|
|
|
return (min_value, max_value) if min_index < max_index else (max_value, min_value)
|
|
|
|
|
|
def interpolate_colors(colors, flat=False, num_colors=256):
|
|
""" given a list of colors, create a larger list of colors interpolating
|
|
the first one. If flatten is True a list of numers will be returned. If
|
|
False, a list of (r,g,b) tuples. num_colors is the number of colors wanted
|
|
in the final list """
|
|
|
|
palette = []
|
|
|
|
for i in range(num_colors):
|
|
index = (i * (len(colors) - 1))/(num_colors - 1.0)
|
|
index_int = int(index)
|
|
alpha = index - float(index_int)
|
|
|
|
if alpha > 0:
|
|
r = (1.0 - alpha) * colors[index_int][0] + alpha * colors[index_int + 1][0]
|
|
g = (1.0 - alpha) * colors[index_int][1] + alpha * colors[index_int + 1][1]
|
|
b = (1.0 - alpha) * colors[index_int][2] + alpha * colors[index_int + 1][2]
|
|
else:
|
|
r = (1.0 - alpha) * colors[index_int][0]
|
|
g = (1.0 - alpha) * colors[index_int][1]
|
|
b = (1.0 - alpha) * colors[index_int][2]
|
|
|
|
if flat:
|
|
palette.extend((int(r), int(g), int(b)))
|
|
else:
|
|
palette.append((int(r), int(g), int(b)))
|
|
|
|
return palette
|
|
|
|
|
|
def desaturate(rgb, amount):
|
|
"""
|
|
desaturate colors by amount
|
|
amount == 0, no change
|
|
amount == 1, grey
|
|
"""
|
|
luminosity = sum(rgb) / 3.0
|
|
desat = lambda color: color - amount * (color - luminosity)
|
|
|
|
return tuple(map(int, map(desat, rgb)))
|
|
|
|
|
|
class WaveformImage(object):
|
|
"""
|
|
Given peaks and spectral centroids from the AudioProcessor, this class will construct
|
|
a wavefile image which can be saved as PNG.
|
|
"""
|
|
def __init__(self, image_width, image_height, palette=1):
|
|
if image_height % 2 == 0:
|
|
raise AudioProcessingException("Height should be uneven: images look much better at uneven height")
|
|
|
|
if palette == 1:
|
|
background_color = (0,0,0)
|
|
colors = [
|
|
(50,0,200),
|
|
(0,220,80),
|
|
(255,224,0),
|
|
(255,70,0),
|
|
]
|
|
elif palette == 2:
|
|
background_color = (0,0,0)
|
|
colors = [self.color_from_value(value/29.0) for value in range(0,30)]
|
|
elif palette == 3:
|
|
background_color = (213, 217, 221)
|
|
colors = map( partial(desaturate, amount=0.7), [
|
|
(50,0,200),
|
|
(0,220,80),
|
|
(255,224,0),
|
|
])
|
|
elif palette == 4:
|
|
background_color = (213, 217, 221)
|
|
colors = map( partial(desaturate, amount=0.8), [self.color_from_value(value/29.0) for value in range(0,30)])
|
|
|
|
self.image = Image.new("RGB", (image_width, image_height), background_color)
|
|
|
|
self.image_width = image_width
|
|
self.image_height = image_height
|
|
|
|
self.draw = ImageDraw.Draw(self.image)
|
|
self.previous_x, self.previous_y = None, None
|
|
|
|
self.color_lookup = interpolate_colors(colors)
|
|
self.pix = self.image.load()
|
|
|
|
def color_from_value(self, value):
|
|
""" given a value between 0 and 1, return an (r,g,b) tuple """
|
|
|
|
return ImageColor.getrgb("hsl(%d,%d%%,%d%%)" % (int( (1.0 - value) * 360 ), 80, 50))
|
|
|
|
def draw_peaks(self, x, peaks, spectral_centroid):
|
|
""" draw 2 peaks at x using the spectral_centroid for color """
|
|
|
|
y1 = self.image_height * 0.5 - peaks[0] * (self.image_height - 4) * 0.5
|
|
y2 = self.image_height * 0.5 - peaks[1] * (self.image_height - 4) * 0.5
|
|
|
|
line_color = self.color_lookup[int(spectral_centroid*255.0)]
|
|
|
|
if self.previous_y != None:
|
|
self.draw.line([self.previous_x, self.previous_y, x, y1, x, y2], line_color)
|
|
else:
|
|
self.draw.line([x, y1, x, y2], line_color)
|
|
|
|
self.previous_x, self.previous_y = x, y2
|
|
|
|
self.draw_anti_aliased_pixels(x, y1, y2, line_color)
|
|
|
|
def draw_anti_aliased_pixels(self, x, y1, y2, color):
|
|
""" vertical anti-aliasing at y1 and y2 """
|
|
|
|
y_max = max(y1, y2)
|
|
y_max_int = int(y_max)
|
|
alpha = y_max - y_max_int
|
|
|
|
if alpha > 0.0 and alpha < 1.0 and y_max_int + 1 < self.image_height:
|
|
current_pix = self.pix[x, y_max_int + 1]
|
|
|
|
r = int((1-alpha)*current_pix[0] + alpha*color[0])
|
|
g = int((1-alpha)*current_pix[1] + alpha*color[1])
|
|
b = int((1-alpha)*current_pix[2] + alpha*color[2])
|
|
|
|
self.pix[x, y_max_int + 1] = (r,g,b)
|
|
|
|
y_min = min(y1, y2)
|
|
y_min_int = int(y_min)
|
|
alpha = 1.0 - (y_min - y_min_int)
|
|
|
|
if alpha > 0.0 and alpha < 1.0 and y_min_int - 1 >= 0:
|
|
current_pix = self.pix[x, y_min_int - 1]
|
|
|
|
r = int((1-alpha)*current_pix[0] + alpha*color[0])
|
|
g = int((1-alpha)*current_pix[1] + alpha*color[1])
|
|
b = int((1-alpha)*current_pix[2] + alpha*color[2])
|
|
|
|
self.pix[x, y_min_int - 1] = (r,g,b)
|
|
|
|
def save(self, filename):
|
|
# draw a zero "zero" line
|
|
a = 25
|
|
for x in range(self.image_width):
|
|
self.pix[x, self.image_height/2] = tuple(map(lambda p: p+a, self.pix[x, self.image_height/2]))
|
|
|
|
self.image.save(filename)
|
|
|
|
|
|
class SpectrogramImage(object):
|
|
"""
|
|
Given spectra from the AudioProcessor, this class will construct a wavefile image which
|
|
can be saved as PNG.
|
|
"""
|
|
def __init__(self, image_width, image_height, fft_size):
|
|
self.image_width = image_width
|
|
self.image_height = image_height
|
|
self.fft_size = fft_size
|
|
|
|
self.image = Image.new("RGBA", (image_height, image_width))
|
|
|
|
colors = [
|
|
(0, 0, 0, 0),
|
|
(58/4, 68/4, 65/4, 255),
|
|
(80/2, 100/2, 153/2, 255),
|
|
(90, 180, 100, 255),
|
|
(224, 224, 44, 255),
|
|
(255, 60, 30, 255),
|
|
(255, 255, 255, 255)
|
|
]
|
|
self.palette = interpolate_colors(colors)
|
|
|
|
# generate the lookup which translates y-coordinate to fft-bin
|
|
self.y_to_bin = []
|
|
f_min = 100.0
|
|
f_max = 22050.0
|
|
y_min = math.log10(f_min)
|
|
y_max = math.log10(f_max)
|
|
for y in range(self.image_height):
|
|
freq = math.pow(10.0, y_min + y / (image_height - 1.0) *(y_max - y_min))
|
|
bin = freq / 22050.0 * (self.fft_size/2 + 1)
|
|
|
|
if bin < self.fft_size/2:
|
|
alpha = bin - int(bin)
|
|
|
|
self.y_to_bin.append((int(bin), alpha * 255))
|
|
|
|
# this is a bit strange, but using image.load()[x,y] = ... is
|
|
# a lot slower than using image.putadata and then rotating the image
|
|
# so we store all the pixels in an array and then create the image when saving
|
|
self.pixels = []
|
|
|
|
def draw_spectrum(self, x, spectrum):
|
|
# for all frequencies, draw the pixels
|
|
for (index, alpha) in self.y_to_bin:
|
|
self.pixels.append( self.palette[int((255.0-alpha) * spectrum[index] + alpha * spectrum[index + 1])] )
|
|
|
|
# if the FFT is too small to fill up the image, fill with black to the top
|
|
for y in range(len(self.y_to_bin), self.image_height): #@UnusedVariable
|
|
self.pixels.append(self.palette[0])
|
|
|
|
def save(self, filename, quality=80):
|
|
assert filename.lower().endswith(".jpg")
|
|
self.image.putdata(self.pixels)
|
|
self.image.transpose(Image.ROTATE_90).save(filename, quality=quality)
|
|
|
|
|
|
def create_wave_images(input_filename, output_filename_w, output_filename_s, image_width, image_height, fft_size, progress_callback=None):
|
|
"""
|
|
Utility function for creating both wavefile and spectrum images from an audio input file.
|
|
"""
|
|
processor = AudioProcessor(input_filename, fft_size, numpy.hanning)
|
|
samples_per_pixel = processor.audio_file.nframes / float(image_width)
|
|
|
|
waveform = WaveformImage(image_width, image_height)
|
|
spectrogram = SpectrogramImage(image_width, image_height, fft_size)
|
|
|
|
for x in range(image_width):
|
|
|
|
if progress_callback and x % (image_width/10) == 0:
|
|
progress_callback((x*100)/image_width)
|
|
|
|
seek_point = int(x * samples_per_pixel)
|
|
next_seek_point = int((x + 1) * samples_per_pixel)
|
|
|
|
(spectral_centroid, db_spectrum) = processor.spectral_centroid(seek_point)
|
|
peaks = processor.peaks(seek_point, next_seek_point)
|
|
|
|
waveform.draw_peaks(x, peaks, spectral_centroid)
|
|
spectrogram.draw_spectrum(x, db_spectrum)
|
|
|
|
if progress_callback:
|
|
progress_callback(100)
|
|
|
|
waveform.save(output_filename_w)
|
|
spectrogram.save(output_filename_s)
|
|
|
|
|
|
class NoSpaceLeftException(Exception):
|
|
pass
|
|
|
|
def convert_to_pcm(input_filename, output_filename):
|
|
"""
|
|
converts any audio file type to pcm audio
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException("file %s does not exist" % input_filename)
|
|
|
|
sound_type = get_sound_type(input_filename)
|
|
|
|
if sound_type == "mp3":
|
|
cmd = ["lame", "--decode", input_filename, output_filename]
|
|
elif sound_type == "ogg":
|
|
cmd = ["oggdec", input_filename, "-o", output_filename]
|
|
elif sound_type == "flac":
|
|
cmd = ["flac", "-f", "-d", "-s", "-o", output_filename, input_filename]
|
|
else:
|
|
return False
|
|
|
|
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
if "No space left on device" in stderr + " " + stdout:
|
|
raise NoSpaceLeftException
|
|
raise AudioProcessingException("failed converting to pcm data:\n" + " ".join(cmd) + "\n" + stderr + "\n" + stdout)
|
|
|
|
return True
|
|
|
|
|
|
def stereofy_and_find_info(stereofy_executble_path, input_filename, output_filename):
|
|
"""
|
|
converts a pcm wave file to two channel, 16 bit integer
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException("file %s does not exist" % input_filename)
|
|
|
|
cmd = [stereofy_executble_path, "--input", input_filename, "--output", output_filename]
|
|
|
|
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
if "No space left on device" in stderr + " " + stdout:
|
|
raise NoSpaceLeftException
|
|
raise AudioProcessingException("failed calling stereofy data:\n" + " ".join(cmd) + "\n" + stderr + "\n" + stdout)
|
|
|
|
stdout = (stdout + " " + stderr).replace("\n", " ")
|
|
|
|
duration = 0
|
|
m = re.match(r".*#duration (?P<duration>[\d\.]+).*", stdout)
|
|
if m != None:
|
|
duration = float(m.group("duration"))
|
|
|
|
channels = 0
|
|
m = re.match(r".*#channels (?P<channels>\d+).*", stdout)
|
|
if m != None:
|
|
channels = float(m.group("channels"))
|
|
|
|
samplerate = 0
|
|
m = re.match(r".*#samplerate (?P<samplerate>\d+).*", stdout)
|
|
if m != None:
|
|
samplerate = float(m.group("samplerate"))
|
|
|
|
bitdepth = None
|
|
m = re.match(r".*#bitdepth (?P<bitdepth>\d+).*", stdout)
|
|
if m != None:
|
|
bitdepth = float(m.group("bitdepth"))
|
|
|
|
bitrate = (os.path.getsize(input_filename) * 8.0) / 1024.0 / duration if duration > 0 else 0
|
|
|
|
return dict(duration=duration, channels=channels, samplerate=samplerate, bitrate=bitrate, bitdepth=bitdepth)
|
|
|
|
|
|
def convert_to_mp3(input_filename, output_filename, quality=70):
|
|
"""
|
|
converts the incoming wave file to a mp3 file
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException("file %s does not exist" % input_filename)
|
|
|
|
command = ["lame", "--silent", "--abr", str(quality), input_filename, output_filename]
|
|
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
raise AudioProcessingException(stdout)
|
|
|
|
def convert_to_ogg(input_filename, output_filename, quality=1):
|
|
"""
|
|
converts the incoming wave file to n ogg file
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException("file %s does not exist" % input_filename)
|
|
|
|
command = ["oggenc", "-q", str(quality), input_filename, "-o", output_filename]
|
|
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
raise AudioProcessingException(stdout)
|
|
|
|
def convert_using_ffmpeg(input_filename, output_filename):
|
|
"""
|
|
converts the incoming wave file to stereo pcm using fffmpeg
|
|
"""
|
|
TIMEOUT = 3 * 60
|
|
def alarm_handler(signum, frame):
|
|
raise AudioProcessingException("timeout while waiting for ffmpeg")
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException("file %s does not exist" % input_filename)
|
|
|
|
command = ["ffmpeg", "-y", "-i", input_filename, "-ac","1","-acodec", "pcm_s16le", "-ar", "44100", output_filename]
|
|
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
signal.signal(signal.SIGALRM,alarm_handler)
|
|
signal.alarm(TIMEOUT)
|
|
(stdout, stderr) = process.communicate()
|
|
signal.alarm(0)
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
raise AudioProcessingException(stdout)
|