
Fixes for systems with Pillow, but leaves a "try: except ImportError" to support anything that doesn't have a PIL top level import. Signed-off-by: Alon Levy <alon@pobox.com>
617 lines
22 KiB
Python
617 lines
22 KiB
Python
#!/usr/bin/env python
|
|
# processing.py -- various audio processing functions
|
|
# Copyright (C) 2008 MUSIC TECHNOLOGY GROUP (MTG)
|
|
# UNIVERSITAT POMPEU FABRA
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as
|
|
# published by the Free Software Foundation, either version 3 of the
|
|
# License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
#
|
|
# Authors:
|
|
# Bram de Jong <bram.dejong at domain.com where domain in gmail>
|
|
# 2012, Joar Wandborg <first name at last name dot se>
|
|
|
|
from PIL import Image, ImageDraw, ImageColor #@UnresolvedImport
|
|
from functools import partial
|
|
import math
|
|
import numpy
|
|
import os
|
|
import re
|
|
import signal
|
|
|
|
|
|
def get_sound_type(input_filename):
|
|
sound_type = os.path.splitext(input_filename.lower())[1].strip(".")
|
|
|
|
if sound_type == "fla":
|
|
sound_type = "flac"
|
|
elif sound_type == "aif":
|
|
sound_type = "aiff"
|
|
|
|
return sound_type
|
|
|
|
|
|
try:
|
|
import scikits.audiolab as audiolab
|
|
except ImportError:
|
|
print "WARNING: audiolab is not installed so wav2png will not work"
|
|
import subprocess
|
|
|
|
class AudioProcessingException(Exception):
|
|
pass
|
|
|
|
class TestAudioFile(object):
|
|
"""A class that mimics audiolab.sndfile but generates noise instead of reading
|
|
a wave file. Additionally it can be told to have a "broken" header and thus crashing
|
|
in the middle of the file. Also useful for testing ultra-short files of 20 samples."""
|
|
def __init__(self, num_frames, has_broken_header=False):
|
|
self.seekpoint = 0
|
|
self.nframes = num_frames
|
|
self.samplerate = 44100
|
|
self.channels = 1
|
|
self.has_broken_header = has_broken_header
|
|
|
|
def seek(self, seekpoint):
|
|
self.seekpoint = seekpoint
|
|
|
|
def read_frames(self, frames_to_read):
|
|
if self.has_broken_header and self.seekpoint + frames_to_read > self.num_frames / 2:
|
|
raise RuntimeError()
|
|
|
|
num_frames_left = self.num_frames - self.seekpoint
|
|
will_read = num_frames_left if num_frames_left < frames_to_read else frames_to_read
|
|
self.seekpoint += will_read
|
|
return numpy.random.random(will_read)*2 - 1
|
|
|
|
|
|
def get_max_level(filename):
|
|
max_value = 0
|
|
buffer_size = 4096
|
|
audio_file = audiolab.Sndfile(filename, 'r')
|
|
n_samples_left = audio_file.nframes
|
|
|
|
while n_samples_left:
|
|
to_read = min(buffer_size, n_samples_left)
|
|
|
|
try:
|
|
samples = audio_file.read_frames(to_read)
|
|
except RuntimeError:
|
|
# this can happen with a broken header
|
|
break
|
|
|
|
# convert to mono by selecting left channel only
|
|
if audio_file.channels > 1:
|
|
samples = samples[:,0]
|
|
|
|
max_value = max(max_value, numpy.abs(samples).max())
|
|
|
|
n_samples_left -= to_read
|
|
|
|
audio_file.close()
|
|
|
|
return max_value
|
|
|
|
class AudioProcessor(object):
|
|
"""
|
|
The audio processor processes chunks of audio an calculates the spectrac centroid and the peak
|
|
samples in that chunk of audio.
|
|
"""
|
|
def __init__(self, input_filename, fft_size, window_function=numpy.hanning):
|
|
max_level = get_max_level(input_filename)
|
|
|
|
self.audio_file = audiolab.Sndfile(input_filename, 'r')
|
|
self.fft_size = fft_size
|
|
self.window = window_function(self.fft_size)
|
|
self.spectrum_range = None
|
|
self.lower = 100
|
|
self.higher = 22050
|
|
self.lower_log = math.log10(self.lower)
|
|
self.higher_log = math.log10(self.higher)
|
|
self.clip = lambda val, low, high: min(high, max(low, val))
|
|
|
|
# figure out what the maximum value is for an FFT doing the FFT of a DC signal
|
|
fft = numpy.fft.rfft(numpy.ones(fft_size) * self.window)
|
|
max_fft = (numpy.abs(fft)).max()
|
|
# set the scale to normalized audio and normalized FFT
|
|
self.scale = 1.0/max_level/max_fft if max_level > 0 else 1
|
|
|
|
def read(self, start, size, resize_if_less=False):
|
|
""" read size samples starting at start, if resize_if_less is True and less than size
|
|
samples are read, resize the array to size and fill with zeros """
|
|
|
|
# number of zeros to add to start and end of the buffer
|
|
add_to_start = 0
|
|
add_to_end = 0
|
|
|
|
if start < 0:
|
|
# the first FFT window starts centered around zero
|
|
if size + start <= 0:
|
|
return numpy.zeros(size) if resize_if_less else numpy.array([])
|
|
else:
|
|
self.audio_file.seek(0)
|
|
|
|
add_to_start = -start # remember: start is negative!
|
|
to_read = size + start
|
|
|
|
if to_read > self.audio_file.nframes:
|
|
add_to_end = to_read - self.audio_file.nframes
|
|
to_read = self.audio_file.nframes
|
|
else:
|
|
self.audio_file.seek(start)
|
|
|
|
to_read = size
|
|
if start + to_read >= self.audio_file.nframes:
|
|
to_read = self.audio_file.nframes - start
|
|
add_to_end = size - to_read
|
|
|
|
try:
|
|
samples = self.audio_file.read_frames(to_read)
|
|
except RuntimeError:
|
|
# this can happen for wave files with broken headers...
|
|
return numpy.zeros(size) if resize_if_less else numpy.zeros(2)
|
|
|
|
# convert to mono by selecting left channel only
|
|
if self.audio_file.channels > 1:
|
|
samples = samples[:,0]
|
|
|
|
if resize_if_less and (add_to_start > 0 or add_to_end > 0):
|
|
if add_to_start > 0:
|
|
samples = numpy.concatenate((numpy.zeros(add_to_start), samples), axis=1)
|
|
|
|
if add_to_end > 0:
|
|
samples = numpy.resize(samples, size)
|
|
samples[size - add_to_end:] = 0
|
|
|
|
return samples
|
|
|
|
|
|
def spectral_centroid(self, seek_point, spec_range=110.0):
|
|
""" starting at seek_point read fft_size samples, and calculate the spectral centroid """
|
|
|
|
samples = self.read(seek_point - self.fft_size/2, self.fft_size, True)
|
|
|
|
samples *= self.window
|
|
fft = numpy.fft.rfft(samples)
|
|
spectrum = self.scale * numpy.abs(fft) # normalized abs(FFT) between 0 and 1
|
|
length = numpy.float64(spectrum.shape[0])
|
|
|
|
# scale the db spectrum from [- spec_range db ... 0 db] > [0..1]
|
|
db_spectrum = ((20*(numpy.log10(spectrum + 1e-60))).clip(-spec_range, 0.0) + spec_range)/spec_range
|
|
|
|
energy = spectrum.sum()
|
|
spectral_centroid = 0
|
|
|
|
if energy > 1e-60:
|
|
# calculate the spectral centroid
|
|
|
|
if self.spectrum_range == None:
|
|
self.spectrum_range = numpy.arange(length)
|
|
|
|
spectral_centroid = (spectrum * self.spectrum_range).sum() / (energy * (length - 1)) * self.audio_file.samplerate * 0.5
|
|
|
|
# clip > log10 > scale between 0 and 1
|
|
spectral_centroid = (math.log10(self.clip(spectral_centroid, self.lower, self.higher)) - self.lower_log) / (self.higher_log - self.lower_log)
|
|
|
|
return (spectral_centroid, db_spectrum)
|
|
|
|
|
|
def peaks(self, start_seek, end_seek):
|
|
""" read all samples between start_seek and end_seek, then find the minimum and maximum peak
|
|
in that range. Returns that pair in the order they were found. So if min was found first,
|
|
it returns (min, max) else the other way around. """
|
|
|
|
# larger blocksizes are faster but take more mem...
|
|
# Aha, Watson, a clue, a tradeof!
|
|
block_size = 4096
|
|
|
|
max_index = -1
|
|
max_value = -1
|
|
min_index = -1
|
|
min_value = 1
|
|
|
|
if start_seek < 0:
|
|
start_seek = 0
|
|
|
|
if end_seek > self.audio_file.nframes:
|
|
end_seek = self.audio_file.nframes
|
|
|
|
if end_seek <= start_seek:
|
|
samples = self.read(start_seek, 1)
|
|
return (samples[0], samples[0])
|
|
|
|
if block_size > end_seek - start_seek:
|
|
block_size = end_seek - start_seek
|
|
|
|
for i in range(start_seek, end_seek, block_size):
|
|
samples = self.read(i, block_size)
|
|
|
|
local_max_index = numpy.argmax(samples)
|
|
local_max_value = samples[local_max_index]
|
|
|
|
if local_max_value > max_value:
|
|
max_value = local_max_value
|
|
max_index = local_max_index
|
|
|
|
local_min_index = numpy.argmin(samples)
|
|
local_min_value = samples[local_min_index]
|
|
|
|
if local_min_value < min_value:
|
|
min_value = local_min_value
|
|
min_index = local_min_index
|
|
|
|
return (min_value, max_value) if min_index < max_index else (max_value, min_value)
|
|
|
|
|
|
def interpolate_colors(colors, flat=False, num_colors=256):
|
|
""" given a list of colors, create a larger list of colors interpolating
|
|
the first one. If flatten is True a list of numers will be returned. If
|
|
False, a list of (r,g,b) tuples. num_colors is the number of colors wanted
|
|
in the final list """
|
|
|
|
palette = []
|
|
|
|
for i in range(num_colors):
|
|
index = (i * (len(colors) - 1))/(num_colors - 1.0)
|
|
index_int = int(index)
|
|
alpha = index - float(index_int)
|
|
|
|
if alpha > 0:
|
|
r = (1.0 - alpha) * colors[index_int][0] + alpha * colors[index_int + 1][0]
|
|
g = (1.0 - alpha) * colors[index_int][1] + alpha * colors[index_int + 1][1]
|
|
b = (1.0 - alpha) * colors[index_int][2] + alpha * colors[index_int + 1][2]
|
|
else:
|
|
r = (1.0 - alpha) * colors[index_int][0]
|
|
g = (1.0 - alpha) * colors[index_int][1]
|
|
b = (1.0 - alpha) * colors[index_int][2]
|
|
|
|
if flat:
|
|
palette.extend((int(r), int(g), int(b)))
|
|
else:
|
|
palette.append((int(r), int(g), int(b)))
|
|
|
|
return palette
|
|
|
|
|
|
def desaturate(rgb, amount):
|
|
"""
|
|
desaturate colors by amount
|
|
amount == 0, no change
|
|
amount == 1, grey
|
|
"""
|
|
luminosity = sum(rgb) / 3.0
|
|
desat = lambda color: color - amount * (color - luminosity)
|
|
|
|
return tuple(map(int, map(desat, rgb)))
|
|
|
|
|
|
class WaveformImage(object):
|
|
"""
|
|
Given peaks and spectral centroids from the AudioProcessor, this class will construct
|
|
a wavefile image which can be saved as PNG.
|
|
"""
|
|
def __init__(self, image_width, image_height, palette=1):
|
|
if image_height % 2 == 0:
|
|
raise AudioProcessingException, "Height should be uneven: images look much better at uneven height"
|
|
|
|
if palette == 1:
|
|
background_color = (0,0,0)
|
|
colors = [
|
|
(50,0,200),
|
|
(0,220,80),
|
|
(255,224,0),
|
|
(255,70,0),
|
|
]
|
|
elif palette == 2:
|
|
background_color = (0,0,0)
|
|
colors = [self.color_from_value(value/29.0) for value in range(0,30)]
|
|
elif palette == 3:
|
|
background_color = (213, 217, 221)
|
|
colors = map( partial(desaturate, amount=0.7), [
|
|
(50,0,200),
|
|
(0,220,80),
|
|
(255,224,0),
|
|
])
|
|
elif palette == 4:
|
|
background_color = (213, 217, 221)
|
|
colors = map( partial(desaturate, amount=0.8), [self.color_from_value(value/29.0) for value in range(0,30)])
|
|
|
|
self.image = Image.new("RGB", (image_width, image_height), background_color)
|
|
|
|
self.image_width = image_width
|
|
self.image_height = image_height
|
|
|
|
self.draw = ImageDraw.Draw(self.image)
|
|
self.previous_x, self.previous_y = None, None
|
|
|
|
self.color_lookup = interpolate_colors(colors)
|
|
self.pix = self.image.load()
|
|
|
|
def color_from_value(self, value):
|
|
""" given a value between 0 and 1, return an (r,g,b) tuple """
|
|
|
|
return ImageColor.getrgb("hsl(%d,%d%%,%d%%)" % (int( (1.0 - value) * 360 ), 80, 50))
|
|
|
|
def draw_peaks(self, x, peaks, spectral_centroid):
|
|
""" draw 2 peaks at x using the spectral_centroid for color """
|
|
|
|
y1 = self.image_height * 0.5 - peaks[0] * (self.image_height - 4) * 0.5
|
|
y2 = self.image_height * 0.5 - peaks[1] * (self.image_height - 4) * 0.5
|
|
|
|
line_color = self.color_lookup[int(spectral_centroid*255.0)]
|
|
|
|
if self.previous_y != None:
|
|
self.draw.line([self.previous_x, self.previous_y, x, y1, x, y2], line_color)
|
|
else:
|
|
self.draw.line([x, y1, x, y2], line_color)
|
|
|
|
self.previous_x, self.previous_y = x, y2
|
|
|
|
self.draw_anti_aliased_pixels(x, y1, y2, line_color)
|
|
|
|
def draw_anti_aliased_pixels(self, x, y1, y2, color):
|
|
""" vertical anti-aliasing at y1 and y2 """
|
|
|
|
y_max = max(y1, y2)
|
|
y_max_int = int(y_max)
|
|
alpha = y_max - y_max_int
|
|
|
|
if alpha > 0.0 and alpha < 1.0 and y_max_int + 1 < self.image_height:
|
|
current_pix = self.pix[x, y_max_int + 1]
|
|
|
|
r = int((1-alpha)*current_pix[0] + alpha*color[0])
|
|
g = int((1-alpha)*current_pix[1] + alpha*color[1])
|
|
b = int((1-alpha)*current_pix[2] + alpha*color[2])
|
|
|
|
self.pix[x, y_max_int + 1] = (r,g,b)
|
|
|
|
y_min = min(y1, y2)
|
|
y_min_int = int(y_min)
|
|
alpha = 1.0 - (y_min - y_min_int)
|
|
|
|
if alpha > 0.0 and alpha < 1.0 and y_min_int - 1 >= 0:
|
|
current_pix = self.pix[x, y_min_int - 1]
|
|
|
|
r = int((1-alpha)*current_pix[0] + alpha*color[0])
|
|
g = int((1-alpha)*current_pix[1] + alpha*color[1])
|
|
b = int((1-alpha)*current_pix[2] + alpha*color[2])
|
|
|
|
self.pix[x, y_min_int - 1] = (r,g,b)
|
|
|
|
def save(self, filename):
|
|
# draw a zero "zero" line
|
|
a = 25
|
|
for x in range(self.image_width):
|
|
self.pix[x, self.image_height/2] = tuple(map(lambda p: p+a, self.pix[x, self.image_height/2]))
|
|
|
|
self.image.save(filename)
|
|
|
|
|
|
class SpectrogramImage(object):
|
|
"""
|
|
Given spectra from the AudioProcessor, this class will construct a wavefile image which
|
|
can be saved as PNG.
|
|
"""
|
|
def __init__(self, image_width, image_height, fft_size):
|
|
self.image_width = image_width
|
|
self.image_height = image_height
|
|
self.fft_size = fft_size
|
|
|
|
self.image = Image.new("RGBA", (image_height, image_width))
|
|
|
|
colors = [
|
|
(0, 0, 0, 0),
|
|
(58/4, 68/4, 65/4, 255),
|
|
(80/2, 100/2, 153/2, 255),
|
|
(90, 180, 100, 255),
|
|
(224, 224, 44, 255),
|
|
(255, 60, 30, 255),
|
|
(255, 255, 255, 255)
|
|
]
|
|
self.palette = interpolate_colors(colors)
|
|
|
|
# generate the lookup which translates y-coordinate to fft-bin
|
|
self.y_to_bin = []
|
|
f_min = 100.0
|
|
f_max = 22050.0
|
|
y_min = math.log10(f_min)
|
|
y_max = math.log10(f_max)
|
|
for y in range(self.image_height):
|
|
freq = math.pow(10.0, y_min + y / (image_height - 1.0) *(y_max - y_min))
|
|
bin = freq / 22050.0 * (self.fft_size/2 + 1)
|
|
|
|
if bin < self.fft_size/2:
|
|
alpha = bin - int(bin)
|
|
|
|
self.y_to_bin.append((int(bin), alpha * 255))
|
|
|
|
# this is a bit strange, but using image.load()[x,y] = ... is
|
|
# a lot slower than using image.putadata and then rotating the image
|
|
# so we store all the pixels in an array and then create the image when saving
|
|
self.pixels = []
|
|
|
|
def draw_spectrum(self, x, spectrum):
|
|
# for all frequencies, draw the pixels
|
|
for (index, alpha) in self.y_to_bin:
|
|
self.pixels.append( self.palette[int((255.0-alpha) * spectrum[index] + alpha * spectrum[index + 1])] )
|
|
|
|
# if the FFT is too small to fill up the image, fill with black to the top
|
|
for y in range(len(self.y_to_bin), self.image_height): #@UnusedVariable
|
|
self.pixels.append(self.palette[0])
|
|
|
|
def save(self, filename, quality=80):
|
|
assert filename.lower().endswith(".jpg")
|
|
self.image.putdata(self.pixels)
|
|
self.image.transpose(Image.ROTATE_90).save(filename, quality=quality)
|
|
|
|
|
|
def create_wave_images(input_filename, output_filename_w, output_filename_s, image_width, image_height, fft_size, progress_callback=None):
|
|
"""
|
|
Utility function for creating both wavefile and spectrum images from an audio input file.
|
|
"""
|
|
processor = AudioProcessor(input_filename, fft_size, numpy.hanning)
|
|
samples_per_pixel = processor.audio_file.nframes / float(image_width)
|
|
|
|
waveform = WaveformImage(image_width, image_height)
|
|
spectrogram = SpectrogramImage(image_width, image_height, fft_size)
|
|
|
|
for x in range(image_width):
|
|
|
|
if progress_callback and x % (image_width/10) == 0:
|
|
progress_callback((x*100)/image_width)
|
|
|
|
seek_point = int(x * samples_per_pixel)
|
|
next_seek_point = int((x + 1) * samples_per_pixel)
|
|
|
|
(spectral_centroid, db_spectrum) = processor.spectral_centroid(seek_point)
|
|
peaks = processor.peaks(seek_point, next_seek_point)
|
|
|
|
waveform.draw_peaks(x, peaks, spectral_centroid)
|
|
spectrogram.draw_spectrum(x, db_spectrum)
|
|
|
|
if progress_callback:
|
|
progress_callback(100)
|
|
|
|
waveform.save(output_filename_w)
|
|
spectrogram.save(output_filename_s)
|
|
|
|
|
|
class NoSpaceLeftException(Exception):
|
|
pass
|
|
|
|
def convert_to_pcm(input_filename, output_filename):
|
|
"""
|
|
converts any audio file type to pcm audio
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException, "file %s does not exist" % input_filename
|
|
|
|
sound_type = get_sound_type(input_filename)
|
|
|
|
if sound_type == "mp3":
|
|
cmd = ["lame", "--decode", input_filename, output_filename]
|
|
elif sound_type == "ogg":
|
|
cmd = ["oggdec", input_filename, "-o", output_filename]
|
|
elif sound_type == "flac":
|
|
cmd = ["flac", "-f", "-d", "-s", "-o", output_filename, input_filename]
|
|
else:
|
|
return False
|
|
|
|
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
if "No space left on device" in stderr + " " + stdout:
|
|
raise NoSpaceLeftException
|
|
raise AudioProcessingException, "failed converting to pcm data:\n" + " ".join(cmd) + "\n" + stderr + "\n" + stdout
|
|
|
|
return True
|
|
|
|
|
|
def stereofy_and_find_info(stereofy_executble_path, input_filename, output_filename):
|
|
"""
|
|
converts a pcm wave file to two channel, 16 bit integer
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException, "file %s does not exist" % input_filename
|
|
|
|
cmd = [stereofy_executble_path, "--input", input_filename, "--output", output_filename]
|
|
|
|
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
if "No space left on device" in stderr + " " + stdout:
|
|
raise NoSpaceLeftException
|
|
raise AudioProcessingException, "failed calling stereofy data:\n" + " ".join(cmd) + "\n" + stderr + "\n" + stdout
|
|
|
|
stdout = (stdout + " " + stderr).replace("\n", " ")
|
|
|
|
duration = 0
|
|
m = re.match(r".*#duration (?P<duration>[\d\.]+).*", stdout)
|
|
if m != None:
|
|
duration = float(m.group("duration"))
|
|
|
|
channels = 0
|
|
m = re.match(r".*#channels (?P<channels>\d+).*", stdout)
|
|
if m != None:
|
|
channels = float(m.group("channels"))
|
|
|
|
samplerate = 0
|
|
m = re.match(r".*#samplerate (?P<samplerate>\d+).*", stdout)
|
|
if m != None:
|
|
samplerate = float(m.group("samplerate"))
|
|
|
|
bitdepth = None
|
|
m = re.match(r".*#bitdepth (?P<bitdepth>\d+).*", stdout)
|
|
if m != None:
|
|
bitdepth = float(m.group("bitdepth"))
|
|
|
|
bitrate = (os.path.getsize(input_filename) * 8.0) / 1024.0 / duration if duration > 0 else 0
|
|
|
|
return dict(duration=duration, channels=channels, samplerate=samplerate, bitrate=bitrate, bitdepth=bitdepth)
|
|
|
|
|
|
def convert_to_mp3(input_filename, output_filename, quality=70):
|
|
"""
|
|
converts the incoming wave file to a mp3 file
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException, "file %s does not exist" % input_filename
|
|
|
|
command = ["lame", "--silent", "--abr", str(quality), input_filename, output_filename]
|
|
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
raise AudioProcessingException, stdout
|
|
|
|
def convert_to_ogg(input_filename, output_filename, quality=1):
|
|
"""
|
|
converts the incoming wave file to n ogg file
|
|
"""
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException, "file %s does not exist" % input_filename
|
|
|
|
command = ["oggenc", "-q", str(quality), input_filename, "-o", output_filename]
|
|
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
(stdout, stderr) = process.communicate()
|
|
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
raise AudioProcessingException, stdout
|
|
|
|
def convert_using_ffmpeg(input_filename, output_filename):
|
|
"""
|
|
converts the incoming wave file to stereo pcm using fffmpeg
|
|
"""
|
|
TIMEOUT = 3 * 60
|
|
def alarm_handler(signum, frame):
|
|
raise AudioProcessingException, "timeout while waiting for ffmpeg"
|
|
|
|
if not os.path.exists(input_filename):
|
|
raise AudioProcessingException, "file %s does not exist" % input_filename
|
|
|
|
command = ["ffmpeg", "-y", "-i", input_filename, "-ac","1","-acodec", "pcm_s16le", "-ar", "44100", output_filename]
|
|
|
|
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
signal.signal(signal.SIGALRM,alarm_handler)
|
|
signal.alarm(TIMEOUT)
|
|
(stdout, stderr) = process.communicate()
|
|
signal.alarm(0)
|
|
if process.returncode != 0 or not os.path.exists(output_filename):
|
|
raise AudioProcessingException, stdout
|