Installed leaflet in extlib

This commit is contained in:
Joar Wandborg
2012-01-10 01:54:37 +01:00
parent c47a03b909
commit c5ba5b0456
96 changed files with 5756 additions and 0 deletions

View File

@@ -0,0 +1,48 @@
/*
* L.Bounds represents a rectangular area on the screen in pixel coordinates.
*/
L.Bounds = L.Class.extend({
initialize: function(min, max) { //(Point, Point) or Point[]
if (!min) return;
var points = (min instanceof Array ? min : [min, max]);
for (var i = 0, len = points.length; i < len; i++) {
this.extend(points[i]);
}
},
// extend the bounds to contain the given point
extend: function(/*Point*/ point) {
if (!this.min && !this.max) {
this.min = new L.Point(point.x, point.y);
this.max = new L.Point(point.x, point.y);
} else {
this.min.x = Math.min(point.x, this.min.x);
this.max.x = Math.max(point.x, this.max.x);
this.min.y = Math.min(point.y, this.min.y);
this.max.y = Math.max(point.y, this.max.y);
}
},
getCenter: function(round)/*->Point*/ {
return new L.Point(
(this.min.x + this.max.x) / 2,
(this.min.y + this.max.y) / 2, round);
},
contains: function(/*Bounds or Point*/ obj)/*->Boolean*/ {
var min, max;
if (obj instanceof L.Bounds) {
min = obj.min;
max = obj.max;
} else {
max = max = obj;
}
return (min.x >= this.min.x) &&
(max.x <= this.max.x) &&
(min.y >= this.min.y) &&
(max.y <= this.max.y);
}
});

View File

@@ -0,0 +1,159 @@
/*
* L.LineUtil contains different utility functions for line segments
* and polylines (clipping, simplification, distances, etc.)
*/
L.LineUtil = {
/*
* Simplify polyline with vertex reduction and Douglas-Peucker simplification.
* Improves rendering performance dramatically by lessening the number of points to draw.
*/
simplify: function(/*Point[]*/ points, /*Number*/ tolerance) {
if (!tolerance) return points.slice();
// stage 1: vertex reduction
points = this.reducePoints(points, tolerance);
// stage 2: Douglas-Peucker simplification
points = this.simplifyDP(points, tolerance);
return points;
},
// distance from a point to a segment between two points
pointToSegmentDistance: function(/*Point*/ p, /*Point*/ p1, /*Point*/ p2) {
return Math.sqrt(this._sqPointToSegmentDist(p, p1, p2));
},
// Douglas-Peucker simplification, see http://en.wikipedia.org/wiki/Douglas-Peucker_algorithm
simplifyDP: function(points, tol) {
var maxDist2 = 0,
index = 0,
t2 = tol * tol;
for (var i = 1, len = points.length, dist2; i < len - 1; i++) {
dist2 = this._sqPointToSegmentDist(points[i], points[0], points[len - 1]);
if (dist2 > maxDist2) {
index = i;
maxDist2 = dist2;
}
}
if (maxDist2 >= t2) {
var part1 = points.slice(0, index),
part2 = points.slice(index),
simplifiedPart1 = this.simplifyDP(part1, tol).slice(0, len - 2),
simplifiedPart2 = this.simplifyDP(part2, tol);
return simplifiedPart1.concat(simplifiedPart2);
} else {
return [points[0], points[len - 1]];
}
},
// reduce points that are too close to each other to a single point
reducePoints: function(points, tol) {
var reducedPoints = [points[0]],
t2 = tol * tol;
for (var i = 1, prev = 0, len = points.length; i < len; i++) {
if (this._sqDist(points[i], points[prev]) < t2) continue;
reducedPoints.push(points[i]);
prev = i;
}
if (prev < len - 1) {
reducedPoints.push(points[len - 1]);
}
return reducedPoints;
},
/*
* Cohen-Sutherland line clipping algorithm.
* Used to avoid rendering parts of a polyline that are not currently visible.
*/
clipSegment: function(a, b, bounds, useLastCode) {
var min = bounds.min,
max = bounds.max;
var codeA = useLastCode ? this._lastCode : this._getBitCode(a, bounds),
codeB = this._getBitCode(b, bounds);
// save 2nd code to avoid calculating it on the next segment
this._lastCode = codeB;
while (true) {
// if a,b is inside the clip window (trivial accept)
if (!(codeA | codeB)) {
return [a, b];
// if a,b is outside the clip window (trivial reject)
} else if (codeA & codeB) {
return false;
// other cases
} else {
var codeOut = codeA || codeB,
p = this._getEdgeIntersection(a, b, codeOut, bounds),
newCode = this._getBitCode(p, bounds);
if (codeOut == codeA) {
a = p;
codeA = newCode;
} else {
b = p;
codeB = newCode;
}
}
}
},
_getEdgeIntersection: function(a, b, code, bounds) {
var dx = b.x - a.x,
dy = b.y - a.y,
min = bounds.min,
max = bounds.max;
if (code & 8) { // top
return new L.Point(a.x + dx * (max.y - a.y) / dy, max.y);
} else if (code & 4) { // bottom
return new L.Point(a.x + dx * (min.y - a.y) / dy, min.y);
} else if (code & 2){ // right
return new L.Point(max.x, a.y + dy * (max.x - a.x) / dx);
} else if (code & 1) { // left
return new L.Point(min.x, a.y + dy * (min.x - a.x) / dx);
}
},
_getBitCode: function(/*Point*/ p, bounds) {
var code = 0;
if (p.x < bounds.min.x) code |= 1; // left
else if (p.x > bounds.max.x) code |= 2; // right
if (p.y < bounds.min.y) code |= 4; // bottom
else if (p.y > bounds.max.y) code |= 8; // top
return code;
},
// square distance (to avoid unnecessary Math.sqrt calls)
_sqDist: function(p1, p2) {
var dx = p2.x - p1.x,
dy = p2.y - p1.y;
return dx * dx + dy * dy;
},
// square distance from point to a segment
_sqPointToSegmentDist: function(p, p1, p2) {
var x2 = p2.x - p1.x,
y2 = p2.y - p1.y;
if (!x2 && !y2) return this._sqDist(p, p1);
var dot = (p.x - p1.x) * x2 + (p.y - p1.y) * y2,
t = dot / this._sqDist(p1, p2);
if (t < 0) return this._sqDist(p, p1);
if (t > 1) return this._sqDist(p, p2);
var proj = new L.Point(p1.x + x2 * t, p1.y + y2 * t);
return this._sqDist(p, proj);
}
};

View File

@@ -0,0 +1,66 @@
/*
* L.Point represents a point with x and y coordinates.
*/
L.Point = function(/*Number*/ x, /*Number*/ y, /*Boolean*/ round) {
this.x = (round ? Math.round(x) : x);
this.y = (round ? Math.round(y) : y);
};
L.Point.prototype = {
add: function(point) {
return this.clone()._add(point);
},
_add: function(point) {
this.x += point.x;
this.y += point.y;
return this;
},
subtract: function(point) {
return this.clone()._subtract(point);
},
// destructive subtract (faster)
_subtract: function(point) {
this.x -= point.x;
this.y -= point.y;
return this;
},
divideBy: function(num, round) {
return new L.Point(this.x/num, this.y/num, round);
},
multiplyBy: function(num) {
return new L.Point(this.x * num, this.y * num);
},
distanceTo: function(point) {
var x = point.x - this.x,
y = point.y - this.y;
return Math.sqrt(x*x + y*y);
},
round: function() {
return this.clone()._round();
},
// destructive round
_round: function() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
return this;
},
clone: function() {
return new L.Point(this.x, this.y);
},
toString: function() {
return 'Point(' +
L.Util.formatNum(this.x) + ', ' +
L.Util.formatNum(this.y) + ')';
}
};

View File

@@ -0,0 +1,55 @@
/*
* L.PolyUtil contains utilify functions for polygons (clipping, etc.).
*/
L.PolyUtil = {};
/*
* Sutherland-Hodgeman polygon clipping algorithm.
* Used to avoid rendering parts of a polygon that are not currently visible.
*/
L.PolyUtil.clipPolygon = function(points, bounds) {
var min = bounds.min,
max = bounds.max,
clippedPoints,
edges = [1, 4, 2, 8],
i, j, k,
a, b,
len, edge, p,
lu = L.LineUtil;
for (i = 0, len = points.length; i < len; i++) {
points[i]._code = lu._getBitCode(points[i], bounds);
}
// for each edge (left, bottom, right, top)
for (k = 0; k < 4; k++) {
edge = edges[k];
clippedPoints = [];
for (i = 0, len = points.length, j = len - 1; i < len; j = i++) {
a = points[i];
b = points[j];
// if a is inside the clip window
if (!(a._code & edge)) {
// if b is outside the clip window (a->b goes out of screen)
if (b._code & edge) {
p = lu._getEdgeIntersection(b, a, edge, bounds);
p._code = lu._getBitCode(p, bounds);
clippedPoints.push(p);
}
clippedPoints.push(a);
// else if b is inside the clip window (a->b enters the screen)
} else if (!(b._code & edge)) {
p = lu._getEdgeIntersection(b, a, edge, bounds);
p._code = lu._getBitCode(p, bounds);
clippedPoints.push(p);
}
}
points = clippedPoints;
}
return points;
};

View File

@@ -0,0 +1,31 @@
/*
* L.Transformation is an utility class to perform simple point transformations through a 2d-matrix.
*/
L.Transformation = L.Class.extend({
initialize: function(/*Number*/ a, /*Number*/ b, /*Number*/ c, /*Number*/ d) {
this._a = a;
this._b = b;
this._c = c;
this._d = d;
},
transform: function(point, scale) {
return this._transform(point.clone(), scale);
},
// destructive transform (faster)
_transform: function(/*Point*/ point, /*Number*/ scale) /*-> Point*/ {
scale = scale || 1;
point.x = scale * (this._a * point.x + this._b);
point.y = scale * (this._c * point.y + this._d);
return point;
},
untransform: function(/*Point*/ point, /*Number*/ scale) /*-> Point*/ {
scale = scale || 1;
return new L.Point(
(point.x/scale - this._b) / this._a,
(point.y/scale - this._d) / this._c);
}
});